

How to estimate IoT projects?

Table of content
Table of content​ 2
Introduction​ 3
IoT project milestones​ 4

Initial Development Spike​ 4
Proof of Concept (POC)​ 5
Minimum Viable Product (MVP)​ 6
Alpha Version​ 7
Beta Version​ 9
Minimal Production Version​ 10
Device Production Support​ 11
Full Product​ 12

Key Client milestone questions​ 13
Milestones Risks Examples​ 14
What is Technical Debt?​ 19
About WizzDev​ 20
Contact Us​ 20

page 2

Introduction
Estimating an IoT project requires more than just listing features and assigning development
time. It involves understanding the broader context in which the product will be built, tested,
certified, and eventually delivered to market. This document provides a structured approach
to evaluating what needs to be considered before any meaningful estimation can begin.

Successful planning depends on early clarity around the project’s purpose. Whether the goal
is to create a Proof of Concept (POC), a Minimum Viable Product (MVP), or a market-ready
solution, each of these outcomes requires a different level of investment, quality, and risk
management. This document outlines the key milestones typically involved in IoT
development and explains what is expected at each stage in terms of scope, deliverables, and
decision points.

Accurate estimation also depends heavily on how well-defined the initial inputs are. Projects
are often delayed or derailed not by technical complexity, but by vague requirements,
misaligned expectations, or overlooked constraints. This guide highlights the common pitfalls
that can occur during planning and execution such as underestimating the effort required for
testing, neglecting hardware limitations, or failing to manage technical debt as it accumulates.

At the same time, the document acknowledges the realities of agile, iterative development. In
IoT, some of the most important decisions such as when to begin CE (Conformité Européenne)
certification, or when to commit to mass production do not necessarily need to wait until the
final product is complete. Understanding what can be done in parallel, and what can evolve
post-deployment through updates or integrations, is key to accelerating time to market
without sacrificing quality.

By reading through the following sections, stakeholders will gain a clear picture of the
structure, risks, and trade-offs that define a modern IoT project. The goal is to enable smarter
planning, more reliable estimates, and better-informed decisions across the entire
development lifecycle.

page 3

IoT project milestones

Initial Development Spike

Overview

●​ Spike Development: A short, focused effort aimed at exploring specific technical
challenges or testing high-risk components. This phase is typically hands-on,
time-boxed, and designed to reduce uncertainty around architecture, tools, or
hardware choices.

●​ Process Setup: Parallel to technical exploration, this milestone involves setting up the
project infrastructure - including development environments, source control, CI/CD
foundations, and team workflows. It also includes alignment on project goals,
communication protocols, and defining an initial delivery cadence.

The initial development spike helps both the
client and the engineering team gain clarity on
the project's direction before committing to larger
development efforts. It de-risks the project by
validating early assumptions and ensuring that
foundational tools, technologies, and processes
are in place for the next stages (POC, MVP, etc.).

Practices

●​ Unit Test Coverage: Minimal, as the focus is on exploration and feasibility rather than
formal development processes.

●​ Documentation: Light, primarily focused on findings, decisions made regarding
technology selection, and a summary of user requirements analysis.

●​ Continuous Testing/Deployment: Not typically implemented at this stage due to the
exploratory nature of the work.

●​ Technical Debt: Not a primary concern yet, but any shortcuts or expedients taken
should be noted for future reference.

page 4

Proof of Concept (POC)

Overview

●​ Objective: To demonstrate the feasibility of a single or a limited set of features in a
controlled environment. It's about answering the question, "Can this idea work?"

●​ Scope: Very narrow, focusing on critical functionalities to prove the concept's viability
without worrying about scalability, performance under load, or full integration with
other systems.

●​ Delivery: Quick and dirty, often with off-the-shelf components and minimal custom
development. Documentation might be limited, and the code is not expected to be
production-ready.

●​ Duration: Typically short, ranging from a few weeks to a couple of months, depending
on the complexity of the technology or integration needed.

The goal of this phase is to validate whether a
proposed solution or technology is technically
viable. It lays the groundwork for deeper
exploration but avoids investment in
production-level robustness. Deliverables in this
stage are throwaway by design and used to
inform decisions about whether to proceed.

Practices

●​ Unit Test Coverage: Low. The focus is on rapid experimentation rather than long-term
code quality. Minimal tests may be added for critical logic or to support quick iteration.

●​ Documentation: Targeted and lightweight. Should include architecture sketches,
assumptions, constraints, and a clear rationale for technical decisions.

●​ Continuous Testing/Deployment: Usually limited or ad hoc. Some automation may be
introduced for testing integrations or supporting demos, especially if timing is tight.

●​ Technical Debt: Expected and accepted. Debt should be noted and consciously
isolated so it can be reassessed or discarded in future phases.

●​ Device Readiness: The device is built entirely from off-the-shelf components,
development kits, or breadboards. The focus is on speed and flexibility rather than
durability, size, or cost-efficiency. No custom hardware is expected at this stage.

page 5

Minimum Viable Product (MVP)

Overview

●​ Objective: The MVP is indeed meant to be a version of the product that has just
enough features to be viable for release to early customers or a select group of users.
The main goal is to validate the product idea, gather insights, and understand the
market demand with minimal development effort.

●​ Scope: It is released to external early adopters or a select group of real users who are
open to testing an early-stage product. These users are typically motivated by a desire
to solve a specific problem and are willing to provide constructive feedback. In some
cases, potential investors may also be involved to assess market fit and traction.

●​ Delivery: The MVP focuses on testing core assumptions and gathering actionable
feedback. Although it may still leverage off-the-shelf components (especially from the
POC stage), this version begins the transition toward a more stable and tailored device
setup. Some early design or integration work may be initiated based on user
feedback, but full custom hardware or optimization is typically deferred to later stages.

●​ Duration: The phase typically lasts from a few weeks to a few months, depending on
the complexity of the product and the scope of user testing. It is long enough to gather
meaningful feedback and validate the core value proposition, but short enough to
avoid over-investing before confirming market fit.

In summary, the MVP serves as the first step toward external validation. While the POC
answers the question “Can this idea work?” in a controlled environment, the MVP answers
“Do users care enough about this solution to engage with it?” This version still carries some
technical debt and uses temporary or prebuilt elements but begins to clarify the path toward a
dedicated product architecture.

Practices

●​ Unit Test Coverage: Moderate. Essential functions should have tests to ensure
reliability for early adopters, aiming for a balance between speed and quality.

●​ Documentation: More comprehensive, covering user stories, API documentation, and
setup guides necessary for early users.

●​ Continuous Testing/Deployment: Should be more established, with basic CI/CD
pipelines in place to support regular updates and feedback incorporation.

●​ Technical Debt: Management becomes critical. Begin addressing any significant debt
from earlier phases, ensuring it doesn’t hinder future development.

●​ Device Readiness: During the MVP phase, the device is still largely based on
off-the-shelf components or development kits used during the POC stage. However,
early feedback may trigger initial hardware refinements, such as custom enclosures,
simplified PCB layouts, or adjustments to physical interfaces.

page 6

Alpha Version

Overview

●​ Purpose: The alpha version follows the MVP stage and focuses on refining the product
through internal validation, technical stabilization, and iterative improvements. Based
on feedback collected during MVP testing, certain features may be adjusted,
extended, or reworked to better meet user expectations and align with product goals.

●​ Scope: This version is not intended for public release. It is typically shared with internal
QA teams, technical stakeholders, or a limited group of trusted external users, such as
enterprise clients or partners, who understand that the product is still undergoing
significant development. Their role is to test broader functionality, explore usability,
and uncover bugs not discovered earlier.

●​ Delivery: In the alpha phase, delivery
efforts target improved functionality,
system integration, and codebase
maturity. The product begins to transition
from experimental builds toward
production-oriented architecture. When
hardware is involved, the alpha version is
where the device starts moving away from
off-the-shelf components toward early
custom prototypes and tighter
hardware-software integration. For most
hardware-related projects, the alpha
phase is also the point where initial
planning for production and CE (Conformité Européenne) certification should begin.
This may include early consultations with test labs, pre-compliance evaluations, and
design adjustments to meet regulatory standards—ensuring the product can move
smoothly toward market readiness in later stages.

●​ Duration: The alpha phase generally spans one to three months, allowing sufficient
time for internal testing, bug fixing, and feature refinement based on MVP insights. If
hardware is involved, this stage may also include 1–2 prototype iteration cycles to
align the physical product with updated software requirements.

The alpha and beta stages allow for iterative improvements and refinements based on both
internal testing and broader user feedback before the full public launch.
So, while the MVP can and often is used with customers to test the core business hypotheses,
the alpha version is more about refinement and preparation for a wider release. This
distinction can vary based on industry, the specific product, and the company's approach to
development and market entry.

page 7

Practices

●​ Unit Test Coverage: Increased, with attention paid to edge cases and full regression
testing. All major features introduced in or after the MVP should be covered to ensure
consistency and avoid reintroducing previously fixed bugs.

●​ Documentation: Broader in scope, including architecture documentation, interface
contracts, changelogs, and known issues. Also includes technical data for early
hardware iterations (e.g. pinouts, PCB schematics, enclosure fit).

●​ Continuous Testing/Deployment: CI/CD pipelines should now support staging
environments and hardware-in-the-loop (HIL) testing where applicable. Firmware and
software builds may be tied to prototype revision cycles.

●​ Technical Debt: Progressive refactoring and cleanup. Workarounds from MVP are
revisited, fragile code is hardened, and scalability concerns are addressed. In
hardware projects, this includes replacing general-purpose development boards with
early-stage custom PCBs or pre-series assemblies.

●​ Device Readiness: This is the phase where the physical product begins to mature.
Off-the-shelf components used during POC and MVP stages may be swapped for
custom hardware, and mechanical design is adjusted based on user feedback and
internal validation. Early versions of enclosures and interfaces may also be tested in
preparation for production tooling.

page 8

Beta Version

Overview

This stage fits best after the completion of the Alpha Version. It serves as the next logical step
in the development process, allowing for refinement based on initial feedback.

●​ Objective: The beta version is a more polished and stable iteration, released to a
broader but still limited external audience. The goal is to collect feedback on product
performance in real-world conditions and to identify any remaining usability or stability
issues from the end-user perspective.

●​ Scope: This version should be feature-complete or close to it, with the focus shifting
toward bug fixing, user experience refinement, and final adjustments before launch.
Feedback from beta testers is used to validate assumptions about usability, reliability,
and performance under realistic conditions.

●​ Delivery: The beta version is shared with external beta testers, including customers
who have signed up for early access, trusted partners, or selected user groups. It
provides valuable insights into how the product behaves in diverse environments,
devices, and usage patterns.

●​ Duration: Like the alpha phase, beta testing typically lasts from a few weeks to a few
months, depending on the volume and type of feedback received. The timeline may
also align with final hardware iteration cycles and the completion of regulatory testing.

Importantly, the beta phase is where formal CE certification testing is often executed, and
where pre-production hardware is validated for quality, compliance, and readiness for mass
manufacturing. All key technical and legal checkpoints should be addressed before exiting
this phase.

Practices

●​ Unit Test Coverage: Very high. Near-complete test coverage is expected to catch
regressions and ensure product reliability.

●​ Documentation: Complete and production-ready, including user manuals, onboarding
guides, troubleshooting resources, and full API specifications. Materials should also
support beta testers in reporting issues.

●​ Continuous Testing/Deployment: Highly optimized pipelines with automated
deployments to test environments, crash/error logging, and structured feedback
collection from beta testers.

●​ Technical Debt: Minimized to near-zero. Any critical or structural debt from earlier
phases should be resolved, ensuring a clean codebase and maintainable architecture.

●​ Device Readiness: The physical product should be close to its final form, with tooling,
enclosures, and assembly methods locked down. Pre-series batches may be produced
to validate the supply chain, assembly processes, and logistics before full-scale
manufacturing.

page 9

Minimal Production Version

Overview

This version marks the shift from testing to market readiness. The Minimal Production Version
includes all essential features, resolves major risks, and meets technical and compliance
requirements. While it may lack some advanced functions, it is stable, updatable, and suitable
for controlled rollout or limited production.

●​ Objective: To deliver a version of the product that is reliable, maintainable, and safe for
real-world use. All core systems are in place, the update mechanism is functional, and
technical risks have been mitigated.

●​ Scope: Final validation of core functionality, firmware/software update capability,
integration stability, and hardware robustness. Depending on the domain, CE
certification and Design Validation Testing may already be completed or underway.

●​ Delivery: This version is suitable for pilot deployments, field trials, or limited
commercial release, especially in regulated or hardware-constrained industries. It
serves as a stable baseline for future iterations and production scaling.

●​ Duration: Typically 1 to 3 months, depending on the time required for certification, final
validation, and early rollout logistics. This phase may run in parallel with procurement
and production ramp-up.

This phase serves as a bridge between development and mass production. It ensures that the
product is stable enough for real-world use, while also verifying that the production and
support infrastructure is ready for scale.

Practices

●​ Unit Test Coverage: Very high, with full regression testing, edge-case validation, and
hardware/software integration tests to ensure long-term stability.

●​ Documentation: Production-grade documentation, including installation manuals,
update instructions, safety guidelines, and CE compliance documentation where
applicable.

●​ Continuous Testing/Deployment: Fully operational. Deployment tools and monitoring
systems are in place to support safe field updates and diagnostics during pilot
operations.

●​ Technical Debt: Should be minimal and well-documented. Only low-risk or
non-blocking debt may remain at this stage.

●​ Device Readiness: At this stage, the device is in its final or near-final hardware form,
with verified components, enclosures, and interfaces. The design is optimized for
production and certification, with pre-series units often built using the intended
mass-production process.

page 10

Device Production Support

Overview

This phase takes place after the Minimal Production Version and runs in parallel with early
production batches. Its goal is to ensure smooth manufacturing, resolve production-related
issues, and enable stable product scaling. Engineering involvement is still high during this
period, as unexpected edge cases, firmware glitches, or mechanical tolerances often emerge
in real-world assembly and use.

●​ Objective: To support manufacturing partners, validate production quality, and
fine-tune the product and process before scaling. This includes addressing factory
feedback, refining test procedures, and resolving field issues from pilot runs.

●​ Scope: The product is technically complete, though minor updates to firmware, test
scripts, or documentation may still be needed. It’s also a key moment to gather
insights from production data and early user returns. CE certification and production
can often begin at this stage final firmware is not required, as long as the hardware is
stable and updatable.

●​ Delivery: This phase ensures that production is stable, scalable, and repeatable. The
focus shifts from development to operational execution and long-term support
readiness.

This milestone bridges engineering and manufacturing. Its success is essential for ensuring
that the final product can be reliably built, shipped, and supported at scale.

Practices

●​ Unit Test Coverage: Maintained at high levels. Production test coverage (including
EOL tests, hardware self-checks, and logging) becomes just as critical as traditional
unit tests.

●​ Documentation: Finalized and adapted for production use. This includes
manufacturing instructions, test protocols, BOM revision logs, firmware flashing
procedures, and repair/return documentation.

●​ Continuous Testing/Deployment: Integrated with production infrastructure. Build
systems may trigger hardware test suites or post-deployment validation. Firmware is
now versioned, signed, and deployed via stable OTA or factory flashing.

●​ Technical Debt: Carefully managed. Any non-critical issues discovered during
production may be logged for future firmware updates or revision planning.

●​ Device Readiness: The hardware is locked for production, but minor adjustments may
be introduced through firmware updates, fixture modifications, or alternate
components (e.g. due to supply issues). Production tolerances, QA thresholds, and test
limits are tuned based on real-world factory feedback. Design-for-Manufacturing (DFM)
and Design-for-Test (DFT) recommendations are finalized.

page 11

Full Product

Overview

Objective: To deliver a complete, production-grade solution that integrates all core and
supporting features, incorporates feedback from earlier stages, and meets both user and
business expectations. The goal is a reliable, scalable, and polished product ready for
long-term use.

Scope: The product is feature-complete, in mass
production, and released to the full market with
onboarding, marketing, and support
infrastructure. Connected devices remain
updateable via firmware or software.

Delivery: This version is deployed at scale with
robust release processes, OTA update
mechanisms, and full integration with support
systems. It marks the transition to ongoing
lifecycle management and continuous
improvement.

The full product marks the shift from validation to scale, reflecting development maturity and
enabling focus on customer success, differentiation, and growth.

Practices

●​ Unit Test Coverage: Comprehensive. All features are thoroughly tested, with ongoing
maintenance to cover new functionalities or changes.

●​ Documentation: Fully maintained. Includes user guides, onboarding documentation,
API references, service manuals, and update instructions for long-term product
support.

●​ Continuous Testing/Deployment: Fully integrated and automated. Supports regular
patches, feature rollouts, and emergency updates without disrupting user experience.

●​ Technical Debt: Proactively managed. Ongoing processes are in place to identify,
prioritize, and eliminate technical debt as the product evolves.

●​ Device Readiness: The device is in full mass production with stable hardware and
processes. Firmware and software can still evolve post-launch, enabling new features,
integrations, and security updates after deployment.

This progression highlights the shift toward stability, quality, and sustainability as the product
matures. Aligning development practices with each stage supports long-term success. Even
post-deployment, firmware updates allow the product to evolve without hardware changes or
re-certification.

page 12

Key Client milestone questions

Does it work?

Yes – by the Beta Version, the product is functionally stable, feature-complete, and tested in
real-world scenarios with actual users. Most technical risks have already been addressed, and
performance across critical use cases is validated. While final adjustments or minor bug fixes
may still be pending, the system at this stage is representative of the final user experience
and ready for field trials, demos, or limited deployments.

When can I start CE certification?

CE certification can typically begin in the Alpha Version or Minimal Production Version,
provided that the hardware design is stable and all safety-related features are implemented. It
is not necessary to wait for the final software version—firmware updates can be applied after
certification, as long as they don’t alter the scope of the certified parameters. Starting
certification early allows the CE process to run in parallel with final development, shortening
time to market and reducing project bottlenecks.

When can I start mass production?

Pilot production can begin during the Device Production Support phase. At this point, the
hardware is considered locked and factory-ready, while the firmware may still be refined.
Thanks to over-the-air (OTA) or service-based update capabilities, you don’t need to delay
production until all features are finalized—devices can be shipped with a stable version and
updated in the field post-deployment. This accelerates launch timelines and keeps your
roadmap flexible.

Can I add features after shipping the product?

Absolutely. For connected devices, post-sale updates are not only possible but often planned.
Features like Home Assistant, Matter, Zigbee, or Homey integrations can be rolled out after
the initial release. This gives your product room to evolve based on customer feedback,
regulatory changes, or market trends—without requiring a new hardware revision or
interrupting the user experience. Planning for post-deployment upgrades also extends the
lifecycle and competitiveness of your product.

page 13

Milestones Risks Examples
Client inputs play a crucial role in shaping the direction and success of IoT projects.
Insufficient or unclear inputs from clients can indeed contribute to the challenges and risks
we've discussed. Here are how insufficient inputs from clients may exacerbate these five
points.

Comprehensive Scope and Complexity Assessment

●​ Insufficient Input: Lack of detail about the project's scope, desired functionalities, or
operational environment can lead to underestimating the project's complexity.

●​ Solution: Clients should strive to provide detailed requirements and objectives,
including any known constraints and expectations for the system's performance and
scalability.

To mitigate the risk of underestimating a project's scope and complexity, it is essential to
begin with a comprehensive scope and complexity assessment. This involves conducting a
thorough requirement analysis through detailed discussions with all stakeholders to fully
understand the integration needs across hardware, software, and network components, as
well as any potential challenges. Engaging experienced experts or consultants early in the
planning phase helps validate assumptions and uncover hidden complexities common in
similar IoT projects. Additionally, adopting a modular system design enables better
management of complexity and facilitates easier adjustments or expansions as the project
evolves.

Prioritizing Security and Privacy from the Start

●​ Insufficient Input: Not specifying security requirements, data protection needs, or
compliance with specific regulations can leave these crucial aspects overlooked in the
planning phase.

●​ Solution: Clients should outline their security and privacy expectations clearly,
including any regulatory standards the project must comply with.

To address the risk of neglecting critical aspects of security and privacy in the early stages, it
is essential to prioritize these elements from the very beginning. Adopting a "security by
design" and "privacy by design" approach ensures that both are foundational principles
integrated into the product from the outset rather than added later. Throughout development,
regular security audits and privacy assessments should be conducted to identify and resolve
vulnerabilities early, potentially involving third-party firms for objective evaluations.
Additionally, staying informed about and adhering to relevant compliance standards and
privacy regulations, such as GDPR is crucial, often requiring the involvement of legal counsel
or compliance experts to provide appropriate guidance.

page 14

Inadequate Testing

●​ Insufficient Input: Failing to communicate the importance of certain functionalities or
the operational contexts in which the IoT solution will be used can result in inadequate
testing scopes.

●​ Solution: Provide detailed use cases, operational scenarios, and critical functionalities
that need rigorous testing, enabling the development team to plan comprehensive
testing strategies.

To prevent the risk of inadequate testing, it is vital to clearly communicate the importance of
specific functionalities and the operational contexts in which the IoT solution will be deployed.
Providing detailed use cases, real-world scenarios, and identifying critical components
requiring thorough validation enables the development team to design a robust and
comprehensive testing strategy. This ensures the final product meets performance
expectations across all intended environments.

Supply Chain Issues

●​ Insufficient Input: Not providing clear timelines or being flexible with component
specifications can aggravate supply chain challenges, especially if specific parts are
hard to source.

●​ Solution: Offer flexibility in component specifications where possible and
communicate any critical deadlines early. This allows for alternative solutions to be
found in case of supply chain issues.

To mitigate supply chain challenges, especially when sourcing specific or hard-to-find
components, it is important to maintain flexibility in component specifications and
communicate key project deadlines early. By doing so, teams can proactively identify viable
alternatives and avoid costly delays. Clear, early input supports strategic planning and helps
navigate potential disruptions in the procurement process.

Lack of Scalability Planning

●​ Insufficient Input: Not discussing future growth expectations or potential expansions
in the system's use can result in a design that's not scalable.

●​ Solution: Share anticipated growth patterns, potential future functionalities, or
expansions so that scalability can be baked into the architecture from the outset.

For a smooth and successful IoT project development process, it's essential for clients to
provide detailed, clear, and comprehensive inputs at the outset and maintain open, ongoing
communication with the development team. This ensures that all project aspects are
adequately covered, from security to scalability, and helps in mitigating risks associated with
development complexities and resource allocation.

page 15

Initial Development Spike

●​ Unclear Project Goals: Without a clear definition of what the project aims to achieve,
the initial development spike may not focus on the right areas, leading to wasted effort
and resources.

To avoid wasted effort and misaligned priorities during the initial development spike, it is
crucial to establish clear and well-defined project goals from the outset. A precise
understanding of the intended outcomes ensures that early development efforts focus on the
most impactful areas, aligning the technical direction with the overall project vision and
minimizing unnecessary rework.

Proof of Concept (POC)

●​ Vague Functional Requirements: If the client doesn't provide detailed requirements,
the POC may not accurately represent the solution needed, risking the project's
viability.

For a proof of concept to effectively validate the project's direction, it must be built on clearly
defined functional requirements. When requirements are vague or incomplete, the resulting
POC may fail to reflect the actual needs of the client, jeopardizing the project's viability. Clear,
detailed input at this stage is essential to ensure the POC serves as a reliable foundation for
further development.

Hardware Misalignment

●​ Insufficient Input: Missing or unclear hardware-level requirements such as power
supply, environmental tolerances, interface standards, or performance constraints can
lead to selecting hardware that is not suited for the real-world application.

●​ Solution: Clients should clearly define operational conditions, expected loads, physical
constraints, and interface needs early in the process. When possible, initial prototyping
should use evaluation boards or hardware simulations to validate assumptions.

Poor hardware choices discovered late in the process can require design revisions, delay
certification, or even lead to restarting parts of the project. To mitigate this, hardware selection
should be grounded in realistic use cases and validated against early test cases. Leveraging
modular architectures or pin-compatible alternatives gives flexibility for adjustments without
full redesigns.

Functional Infeasibility

page 16

●​ Insufficient Input: Unclear goals, overambitious feature sets, or assumptions not

grounded in technical validation can lead to discovering that some tasks or use cases
are infeasible technically, financially, or within available resources.

●​ Solution: All critical functions should be validated early ideally during the development
spike or POC phase with an emphasis on riskier or less proven assumptions. Clients
should be open to scoping discussions and support prioritization of what's truly
essential.

Some features may appear viable on paper but become unworkable when implementation
begins due to integration limits, real-time constraints, or unexpected side effects. To avoid
wasting resources, projects should define must-have vs nice-to-have features, and de-risk
complex functionality early through technical spikes or feasibility sprints.

Minimum Viable Product (MVP)

●​ Undefined Target Audience: Not knowing who the product is for can result in an MVP
that doesn't meet user needs or expectations, impacting future development
directions.

●​ Insufficient Market Insights: Lacking insight into the market can lead to developing an
MVP that isn't viable or misses key market opportunities.

To ensure the MVP delivers real value, it is essential to clearly define the target audience and
understand their needs from the outset. Without this clarity, the product risks missing the
mark, leading to misaligned features and poor user engagement. Additionally, a lack of market
insight can result in an MVP that fails to address real opportunities or competitive gaps. A
well-informed MVP strategy must be grounded in both user and market understanding to
guide meaningful future development.

page 17

Alpha Version

●​ Lack of Feedback on MVP: Without client or user feedback on the MVP, the alpha
version may not address key issues or incorporate valuable improvements.

●​ Incomplete Feature List: Failing to prioritize which features should be developed can
lead to an alpha version that doesn't align with strategic goals.

The alpha version should be shaped by direct feedback on the MVP to ensure it addresses
actual user needs and known issues. Skipping this step can lead to missed opportunities for
improvement. Moreover, without a prioritized and strategic feature list, the alpha release may
lack alignment with business goals or technical direction. Effective alpha development
requires structured input and a clear roadmap informed by early learnings.

Beta Version

●​ Ambiguous Testing Criteria: Without clear testing goals from the client, the beta
phase might not yield useful data, impacting the product's refinement process.

●​ Poorly Defined Success Metrics: Not establishing what success looks like for the beta
can result in unclear directions for final adjustments.

For the beta phase to generate actionable insights, it must be guided by clearly defined
testing criteria and success metrics. Ambiguity in these areas can render test results
inconclusive and hinder meaningful refinement. A successful beta process depends on
establishing what needs to be validated and what constitutes a successful outcome, enabling
the team to focus on the right adjustments before full release.

Full Product

●​ Vague Scalability Requirements: If the client hasn't provided clear expectations for
scaling, the full product may face challenges handling growth, affecting performance
and user satisfaction.

●​ Unclear Maintenance and Support Needs: Without a clear understanding of expected
post-launch support and maintenance, planning for the long-term sustainability of the
product can be challenging, potentially leading to higher costs and customer
dissatisfaction.

Delivering a scalable and sustainable full product depends heavily on early clarity regarding
growth expectations and long-term support needs. Without a clear understanding of
scalability requirements, the product may struggle to handle increased demand, risking
performance issues. Similarly, vague post-launch support expectations can lead to inadequate
maintenance planning, higher operational costs, and lower customer satisfaction. A
forward-looking approach to both scalability and support is key to long-term success.

page 18

What is Technical Debt?
Technical debt is a concept in software development that reflects the extra work that arises
when short-term solutions are chosen over better approaches that would take longer. In the
context of IoT projects, this could mean choosing faster, simpler solutions for firmware
development, integration, or data handling that are not scalable or efficient in the long term.

Why it's important to be aware of it

Technical debt accumulates quickly, especially under time or budget pressure. In IoT, early
compromises can affect system stability, scalability, and long-term maintainability. Being aware
of technical debt helps teams make informed decisions about acceptable trade-offs and when
to pay them off.

The importance of a strategic approach

Managing technical debt effectively involves:

●​ Prioritizing: Identify which debts most impact scalability, maintainability, or
performance.

●​ Scheduling: Allocate time in development cycles to address known issues.
●​ Tracking: Keep a visible list of technical shortcuts and revisit them regularly.

A strategic approach keeps technical debt from blocking future improvements or creating
avoidable risks.

Consequences of Low vs. High Technical Debt

Low Technical Debt:

●​ Pros: Projects with low technical debt are more agile and can adapt to changes or new
requirements more easily. They tend to have lower maintenance costs and higher
stability, leading to a better overall product quality and user experience.

●​ Cons: Achieving low technical debt may require more time and resources upfront,
potentially delaying the initial release.

High Technical Debt:

●​ Pros: Taking on technical debt can accelerate early stages of development, allowing
projects to reach market faster or to validate concepts with minimal initial investment.

●​ Cons: High technical debt can lead to increased costs in the long run due to more
frequent maintenance issues, difficulties in adding new features, poor performance,
and, ultimately, a less reliable product. It can also lead to a higher risk of system
failures and security vulnerabilities.

page 19

About WizzDev
WizzDev is a team of passionate technologists dedicated to building advanced software and
embedded systems for innovative IoT solutions. As proud AWS partners, we transform creative
ideas into market-ready products tailored for a fast-evolving world.

We focus on delivering software that’s not only functional but also future-proof. Our
experienced team excels at optimizing complex hardware and aligning it with the latest tech
trends and upcoming challenges.

From electronics design and firmware development to PCB prototyping, our versatility is our
strength. With an Agile mindset, we adapt quickly to changing requirements—crucial for
companies aiming to scale fast.

Our collaboration with AWS gives our clients access to cutting-edge tools and resources,
enabling us to build reliable, cloud-integrated IoT solutions. We've contributed to the growth of
sectors like smart home, medtech, bioscience, and automotive.

At WizzDev, we believe innovation drives success. That’s why we embrace every challenge
with enthusiasm, delivering solutions that often exceed expectations. Let’s build the future
together.

Contact Us

page 20

https://wizzdev.com/contact-us/

	
	
	
	How to estimate IoT projects?
	
	
	
	
	Table of content
	
	Introduction
	

	IoT project milestones
	Initial Development Spike
	Overview
	
	Practices

	
	Proof of Concept (POC)
	Overview
	
	Practices

	Minimum Viable Product (MVP)
	Overview
	Practices

	Alpha Version
	Overview
	
	Practices

	
	Beta Version
	Overview
	Practices

	Minimal Production Version
	Overview
	Practices

	Device Production Support
	Overview
	Practices

	Full Product
	Overview
	Practices

	Key Client milestone questions
	Does it work?
	When can I start CE certification?
	When can I start mass production?
	Can I add features after shipping the product?

	
	Milestones Risks Examples
	Comprehensive Scope and Complexity Assessment
	Prioritizing Security and Privacy from the Start
	Inadequate Testing
	Supply Chain Issues
	Lack of Scalability Planning
	Initial Development Spike
	Proof of Concept (POC)
	Hardware Misalignment
	
	
	Functional Infeasibility
	Minimum Viable Product (MVP)
	

	Alpha Version
	Beta Version
	Full Product

	What is Technical Debt?
	Why it's important to be aware of it
	The importance of a strategic approach

	Consequences of Low vs. High Technical Debt
	Low Technical Debt:
	High Technical Debt:

	About WizzDev
	
	
	Contact Us

